新兴纳米材料在食品安全检测样品前 处理中的应用

刘江花¹, 吴 頔²,韩皓宇^{1,3},张月瑶¹,周 琼³,李国梁^{1*},吴永宁^{1,4} (1. 陕西科技大学食品与生物工程学院,西安 710021;2. 浙江清华长三角研究院,嘉兴 314006; 3. 安康学院现代农业与生物科技学院,安康 725000;4. 国家食品安全风险评估中心,北京 100050)

摘 要: 食品安全是全球公共卫生关注的重大问题,食品中的多种污染物严重威胁着人类健康,由于食品基质复杂且污染物含量低,难以直接对目标污染物进行分析,有效的样品前处理是痕量污染物分析必不可少的环节。近年来,纳米材料的兴起促进了样品前处理技术的发展。本文全面综述了近 3 年(2018~2020)基于碳纳米材料、金属有机框架、共价有机框架、聚多巴胺衍生材料以及分子印迹聚合物等新兴纳米材料的固相萃取技术、磁性固相萃取技术、分散固相萃取技术、固相微萃取技术等样品前处理技术在食品样品污染物分析中的研究进展,分析了基于以上纳米材料的食品样品前处理方法的优势和局限性,并对该领域未来发展前景进行了展望。

关键词: 食品安全; 纳米材料; 污染物; 样品前处理 DOI:10.19812/j.cnki.jfsq11-5956/ts.2020.17.001

Application of emerging nanomaterials in food safety testing sample pretreatment

LIU Jiang-Hua¹, WU Di², HAN Hao-Yu^{1,3}, ZHANG Yue-Yao¹, ZHOU Qiong³, LI Guo-Liang^{1*}, WU Yong-Ning^{1,4}

 School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China;
 Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China; 3. College of Modern Agriculture and Biotechnology, Ankang University, Ankang 725000, China; 4. China National Center for Food Safety Risk Assessment, Beijing 100050, China)

ABSTRACT: Food safety has been a global public health concern. Numerous contaminants in food seriously threaten human health. Due to the complexity of food matrix and trace level of contaminants, it is difficult to directly analyze the target contaminants, so the effective food pretreatment approach is of great significance to analyze trace contaminants. Recently, development of nanomaterials has greatly promoted the innovation of food sample pretreatment methods. This review comprehensively summarized the progress of pretreatment methods including solid-phase extraction, solid-phase microextraction, dispersive solid-phase extraction, magnetic solid phase extraction for food safety screening based on the emerging nanomaterials including carbon nanomaterials, metal organic frameworks, covalent organic frameworks, polydopamine-derived materials and molecularly imprinted polymers

Fund: Supported by the National Natural Science Foundation of China (21677085, 31801454)

*通讯作者: 李国梁, 博士, 教授, 主要研究方向为食品安全检测与质量控制技术。E-mail: 61254368@163.com

基金项目:国家自然科学基金项目(21677085、31801454)

^{*}Corresponding author: LI Guo-Liang, Ph.D, Professor, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China. E-mail: 61254368@163.com

(period 2018-2020), outlined their advantages and limitations, and discussed the future development prospects and challenges in this field as well.

KEY WORDS: food safety; nanomaterials; contaminants; sample pretreatment

1 引 言

食品安全关系到人类健康而成为全球公共卫生关注 的问题,食品污染是食品安全领域重点关注的问题之一。 食品污染是由于食品在生产、加工、包装、储存和运输等 过程中受到有毒有害物质的污染,如农药或兽药使用不当 造成的药物残留、引入非法添加剂、长期储存产生的毒素 以及食品加工过程中产生的有害物质等,这些污染物通过 食物链在人体内积累,从而对人类健康造成潜在威胁^[1-4], 因此开发快速、简单和可靠的分析方法有效监测食品污染 物对于保障食品安全和人类健康意义重大。当前色谱分析 技术已经广泛应用于食品污染物的监测,但是由于食品基 质形态多样、成分复杂,且污染物含量较低,很难直接通 过仪器进行检测。为了提高检测灵敏度和准确性,开发有 效的样品前处理方法以去除基质效应、富集目标分析物是 痕量污染物定性和定量的关键^[5]。

已有多种样品前处理方法被开发, 传统的样品前处 理方法如液液萃取(liquid-liquid extraction, LLE)存在选择 性差、操作繁琐且需要大量有机溶剂等不足^[6,7],近年发展 起来的新型样品前处理方法包括分散液液微萃取 (dispersive liquid-liquid microextraction, DLLME)、固相萃 取(solid-phase extraction, SPE)、固相微萃取(solid-phase microextraction, SPME)、分散固相萃取 (dispersive solid-phase extraction, DSPE)、搅拌棒吸附萃取(stir bar sorptive extraction, SBSE)和磁性固相萃取(magnetic solid phase extraction, MSPE)克服了传统方法的缺陷且各自具有 独特优点,因而应用更加广泛^[5,8]。样品前处理方法的发展 依托于吸附剂的不断创新, 纳米材料的兴起为吸附剂的选 择提供了广阔空间。纳米材料由有机或无机材料合成,其 典型尺寸范围约为 0.2~100 nm, 因其具有超小尺寸、较大 比表面积、独特的结构和功能特性被认为是良好的吸附剂 [9]。已有多种类型的纳米材料被应用至食品样品前处理研 究,主要包括碳纳米材料、金属有机物框架(metal organic frameworks, MOFs)、共价有机框架 (covalent organic frameworks, COFs)、分子印迹聚合物(molecularly imprinted polymers, MIPs)和其他新兴纳米材料。本文针对上述纳米 材料在食品样品前处理中的应用进行总结(图 1), 概述了 不同纳米材料的优点和局限性,讨论了该领域的未来发展 前景和挑战,为进一步合理设计纳米材料并拓宽其在样品 前处理的应用奠定基础。

图 1 新兴纳米材料在食品样品前处理中的应用 Fig.1 Application of emerging nanomaterials in food sample pretreatment

2 新兴纳米材料在食品样品前处理中的应用

2.1 碳纳米材料

碳纳米材料具有多种同素异形体,包括零维(0D)富勒 烯(C60)、一维(1D)碳纳米管(carbon nanotube, CNT)、二维 (2D)石墨烯、三维(3D)石墨和其他碳纳米材料^[10]。碳纳米 材料由于具有高稳定性和吸附性,且可以通过 π-π 堆积和 疏水作用对目标分析物产生强亲和力,已经成为食品样品 前处理中的重要吸附剂,其中碳纳米管和石墨烯及其衍生 物应用广泛。表1列出了碳纳米材料在食品样品前处理中 的应用。

2.1.1 碳纳米管

碳纳米管(carbon nanotube, CNT)由 Iijima于 1991年 发现^[26], CNT 是由一层或多层石墨烯片组成的中空石墨材 料,主要包括单壁碳纳米管(single-walled carbon nanotube, SWCNT)和多壁碳纳米管(multi-walled carbon nanotubes, MWCNT)。CNT 具有很多显著的特性如中空管状结构、丰 富的堆叠电子、热稳定性好、较强的疏水性、较大的比表 面积等,使其对有机化合物具有较强的亲和力,但是原始 CNT 在水溶液中分散性差,限制了 CNT 的应用范围^[12]。

5	7	9	7

		Table 1	Application of c	arbon-based nanomateri.	als in food sample pretrea	atment		
碳纳米材料	修饰	分析物	前处理方法	检测技术	检出限	线性范围	基质	参考文献
N-CNTs	$\mathrm{Fe}_{3}\mathrm{O}_{4}$	双酚	MSPE	HPLC-MS	0.43~2.47 ng/L	2.0~1000 ng/L	果汁	[11]
MWCNTs	ZrO_2	多环芳烃	SPME	HPLC-UV	0.033~0.16 μg/L	0.1~200 μg/L	茶和咖啡	[12]
$\rm Fe_3O_4$ -CNTs	-HS-	磺胺类	MSPE	HPLC-DAD	0.02~1.5 μg/L	0.1~500 μg/L	牛奶和鸡肉	[13]
MMWCNTs	$\mathrm{Fe}_{3}\mathrm{O}_{4}$	农药	MSPE	HPLC-UV	0.1~0.25 mg/kg	0.5~20 mg/kg	水果和蔬菜	[14]
MCNT	-NH ₂	磺胺类	MSPE	HPLC-MS	$2{\sim}10~{\rm ng/L}$	0.5~100 μg/L	牛奶	[15]
iraphitized MWCNTs	-NH ₂ , -OH, -COOH	农药	DSPE	GPC-GC-MS/MS	0.5~5.0 µg/kg	0.5~100 ng/mL	茶	[16]
Fe ₃ O ₄ -MWCNTs	$\mathrm{Fe}_{3}\mathrm{O}_{4}$	真菌毒素	DSPE	UPLC-MS/MS	0.0006~1.6337 ng/g	0.1~500 ng/g	谷物	[17]
N-CNTCs	Nitrogen-doped	冈田酸	MSPE	HPLC-MS/MS	1.3 pg/mL	3.0~1000.0 pg/mL	水产品	[18]
GO	а	黄曲霉毒素	SBSE	HPLC-LIF	2.4~8.0 pg/mL	7.5~500 pg/mL	豆奶	[19]
$\mathrm{Fe}_3\mathrm{O}_4@\mathrm{SiO}_2@\mathrm{G}$	ILs	防腐剂	MSPE	UPLC-MS/MS	0.01~0.15 μg/L	0.5~50 μg/L	蔬菜	[20]
Fe ₃ O ₄ @GC	$\mathrm{Fe}_{3}\mathrm{O}_{4}$	邻苯二甲酸酯	MSPE	HPLC	0.09~0.28 μg/L	0.5~500 μg/L	饮料	[21]
PPy-rGOx-Fe ₃ O ₄	$\mathrm{Fe}_{3}\mathrm{O}_{4}$	邻苯二甲酸酯	MSPE	GC-MS/MS	0.005~0.01 μg/L	0.005~500 µg/L	瓶装饮料	[22]
GONRs-HF	HF	内分泌干扰物质	SLPME	HPLC-PDA	0.1~0.4 μg/L	$1{\sim}1500\mu g/L$	饮料	[23]
3D CS-rGO	CS	农药	dSPE	UPLC-MS/MS	0.02~0.67 μg/kg	0.0001~0.02 mg/kg	茶	[24]
MCN	а	磺胺类	CA-dSPE	HPLC	0.02~0.05 ng/mL	0.09~200 ng/mL	牛奶	[25]

对 CNT 表面和结构进行功能化修饰可以改善其理化特性 和分散性,且被功能基团修饰还能够提高其对目标分析物 的选择性和吸附性。近年来,大量功能化 CNT 被用作食品 污染物的吸附剂。Nasir 等^[13]制备硫醇功能化的磁性碳纳 米管,将其用作磁性微萃取(magnetic micro-solid phase extraction, M-μ-SPE)的吸附剂, 功能基团的选择性使其能 够高效富集牛奶和鸡肉样品中的磺胺。Lei 等[14]通过化学 共沉淀法合成磁性多壁碳纳米管(magnetic multiwalled carbon nanotubes, MMWCNTs), 用于水果和蔬菜中的氟环 唑、戊唑醇和甲霜灵手型农药残留的吸附,其高比表面积 增强了吸附性能,使其具有高效、简便、低成本和省时的 优点。Fu 等^[15]将磁性纳米颗粒沉积于 CNT-NH₂, 以异氰酸 酯作为修饰剂,通过亲核加成反应功能化 CNT-NH₂,制备 了新型功能化的磁性碳纳米管,选择吸附性能更好的对甲 苯基功能化的磁性碳纳米管作为 MSPE 的吸附剂, 可从牛 奶样品中高效富集磺胺,优化后的富集系数约为 30。Chen 等[18]通过碳化沸石咪唑框架-67 制备磁性氮掺杂的碳纳米 管笼,碳化过程中沸石咪唑框架-67的Co(II)转化为氮掺杂 的碳纳米管笼的磁性功能纳米颗粒,同时源自有机配体的 大量氮被掺杂到碳骨架中,这种独特的结构使氮掺杂的碳 纳米管笼具有出色的化学稳定性、高亲和力和良好的分散 性,将合成的磁性氮掺杂的碳纳米管笼作为 MSPE 的吸附 剂,结合高效液相色谱-串联质谱法(high performance liquid chromatography tandem mass spectrometry, HPLC-MS/MS)建立了一种简单、高效、灵敏的冈田酸检测 方法,用于贝类和海鲜样品中 OA 的检测和定量,该方法 在 3.0~1000.0 pg/mL 范围内具有良好的线性(r²≥0.9994), 检测限 (limit of detection, LOD) 和定量限 (limit of quantification, LOQ)分别为 1.3 pg/mL 和 3.0 pg/mL。

2.1.2 石墨烯及其衍生材料

石墨烯(graphene, G)是由 Novoselov 等于 2004 年首次 从石墨中分离得到的[27]。石墨烯是碳的同素异形体形式, 由无数个 sp²杂化的碳原子组成且排列成蜂窝状晶格的二 维平面结构,其厚度等于原子直径大小。石墨烯的组成结 构决定其具有独特的理化性质,如高比表面积(2700 m²/g)、生物相容性和暴露的多个活性位点等^[28],使其能够 作为吸附剂应用于分析领域。但是石墨烯容易聚集且选择 性差,阻碍了其在实际中的应用。石墨烯可以通过氧化生 成氧化石墨烯(graphene oxide, GO),并进一步反应生成还 原的 GO(reduced GO, rGO), 与原始石墨烯相比, 衍生化材 料由于表面具有丰富的含氧官能团如羟基、羧基和环氧化 物,应用范围更加广泛。此外,功能化的石墨烯无机/有机 复合材料能够有效缓解石墨烯片层聚集的问题,提高材料 的吸附性能,使其在实际应用中发挥更大的作用。近年来, 大量石墨烯及其衍生材料被应用于食品样品前处理研究。 Cao 等^[20]制备了多种离子液体功能化的磁性石墨烯

(Fe₃O₄@SiO₂@G)纳米复合材料,将其作为 MSPE 吸附剂 结合 UPLC-MS/MS 检测蔬菜样品中的防腐剂,其中 VOIm⁺ NapSO₃修饰的 Fe₃O₄@SiO₂@G显示更好的吸附性 能(LOD 可达 0.01~0.15 µg/L), 这是由于含有 2 个苯环结构 的离子液体能够产生适当的 π-π 共轭, 较小的空间位阻使 其易与防腐剂结合,且咪唑环和羟基提供了形成氢键的可 能性。Zhang 等^[24]通过溶剂热法合成了具有 3D 结构的壳 聚糖-还原氧化石墨烯复合材料(3D CS-rGO), 一步实现了 GO 还原和 CS 交联, 3D CS-rGO 对茶叶中的儿茶素、咖啡 因和色素显示了较强的吸附能力,尤其是对于儿茶素的吸 附能力是 GO 的 10 倍(179.3 mg/g 对 18.7 mg/g)。与传统吸 附剂相比, 3D CS-rGO 显示出最佳基质干扰去除效率, 可 将基质对目标农药的影响降低 1%~55%, 以 3D CS-rGO 作 为反向分散固相萃取吸附剂成功富集茶叶中 70 种常见农 药。Han 等^[23]开发了基于氧化石墨烯纳米带增强的中空纤 维 (graphene oxide nanobelts reinforced hollow fibers, GONRs-HF)和 1-正辛醇的固相/液相微萃取(solid/liquid phase microextraction, SLPME)技术,利用化学氧化法从 MWCNTs 上剥离获得 GONR,将其通过表面活性剂的辅助 作用分散至超纯水中,再固定至 HF 壁孔形成 GONRs-HF, 该材料的亲水性相比 CNTs 显著提高,将 GONRs-HF 的壁 孔和内腔填充1-正辛醇后用于目标分析物的富集。与其他 吸附方法相比较, GONRs-HF-SLPME 对 5 种双酚型 EDCs 显示了更好的吸附效能。

与碳纳米管相比,石墨烯和氧化石墨烯更易合成,且 由于石墨烯平面的两面均可吸附分析物,使得石墨烯及其 衍生物具有更快的吸附平衡和更容易的分析物洗脱,作为 SPE 吸附剂表现出比碳纳米管更高的性能^[29]。但是迄今为 止,基于纳米管在 SPE 的应用比石墨烯明显更广泛,这主 要是由于石墨烯及其衍生物存在一些缺点:首先,与 o-CNTs 相比, GO 的分散性更高,很难从萃取介质中回收, 当其作为柱吸附剂时,GO 纳米片的柔软性、柔韧性和小尺 寸会导致高背压;其次如 Islam 等^[30]报道,在某些条件下 GO 发生的不可逆聚集会阻碍基于石墨烯的 SPE 的发展。 第三,在 m-GO 衍生物中,通过静电作用合成的磁性材料 由于本身较弱的连接能力容易脱落。此外,在发现石墨烯 之前就能够获得商业化、纯净、特性良好且相对便宜的 CNT,这也是基于 CNT 在 SPE 应用更广泛的一种可能^[31]。 2.1.3 石墨氮化碳

石墨氮化碳(graphitic carbon nitride, g-C₃N₄)作为一种 新型 2D 石墨烯类似物, 近年来受到越来越多的关注^[32-34]。 g-C₃N₄ 主要由碳、氮原子组成,可以通过化学气相沉积、 固态反应、热分解和溶剂热等方法合成。g-C₃N₄具有热稳 定性、化学稳定性、低摩擦系数、低密度、良好的生物相 容性和易于表面修饰的优点,此外,由于 g-C₃N₄在形成过 程中 C、N 原子之间的 sp²杂化,以及取代 C-N 极性键使 得六元环的 π-离域作用减少, g-C₃N₄的芳族特性小于石墨 烯,显著提高了 g-C₃N₄的回收率^[35]。因此 g-C₃N₄已被广 泛用于食品安全检测,其吸附作用主要依靠氢键作用、π-π 共轭、静电作用和疏水作用。例如, Zhang 等^[25]合成介孔石 墨氮化碳用于牛奶中磺胺的高效富集。

综上所述,使用合成简单、具有较大比表面积和有序 结构的碳纳米材料作为吸附剂是从复杂食品基质中富集污 染物的有效策略,但是碳纳米材料的低亲水性和选择性严 重限制了它们的使用,采用官能团修饰碳纳米材料可以增 强亲水性和选择性,显著拓宽其在食品样品前处理中的应 用范围。

2.2 金属有机框架材料

MOFs 是一类由无机金属中心(金属离子或金属簇)与 有机配体通过配位作用组装而成的具有拓扑结构和可调孔 径的三维多孔晶体材料^[36,37],常见的金属离子和有机配体 包括 Zn(II)、Cu(II)、Fe(III)、Zr(IV)、对苯二甲酸、均苯 三甲酸和 2-甲基咪唑等。与传统的沸石多孔材料相比, MOFs 具有比表面积大、孔径易于调节、具有多个活性位 点、表面易于修饰等优点,因而被广泛用于气体存储和分 离、化学传感、催化、药物递送、吸附等领域^[38]。近年来, MOFs 及其衍生材料作为新兴吸附剂被应用至食品样品前 处理研究(表 2)。

2.2.1 MOF 材料

2006年, Zhou 等^[62]首次以 MOF 材料作为 SPE 的吸附 剂, 合成了 Cu(4-C5H4N-COO)2H2O)4 有效富集痕量多环芳 烃。2009年, Cui 等^[63]首次提出使用 MOF 材料 MOF-199 包被 SPME 纤维富集苯同系物, MOF-199 独特的多孔结构 和较大的比表面积提高了萃取效率。以 MOF 材料作为纤 维涂层广泛用于食品样品前处理中。Zhang 等^[42]通过化学 键合策略制备了系列 MOF 涂层纤维用于植物油中多氯联 苯的富集,首先合成二氧化硅功能化的不锈钢纤维,再分 别将 MOF 材料 ZIF-90(Zn)、MOF-199(Cu)、MIL-101(Cr)、 MOF-5(Zn)通过配体与 Si-OH 之间的化学反应进行纤维涂 覆获得 MOF 涂层纤维, 该方法克服了纤维涂层容易脱落 的缺点,提高了材料的稳定性。Zhang 等^[40]将铁基 MOF 和 GO 复合材料 MIL-88(Fe)/GO 共价键合至不锈钢基底制备 成 SPME 纤维, 该纤维具有良好的耐久性, 可重复使用 100 次以上。随后基于 MIL-88(Fe)/GO 涂层纤维的 SPME 和气相色谱-火焰离子化检测器法(gas chromatography flame ionization detector, GC-FID)建立了植物油中邻苯二 甲酸酯的灵敏检测方法,其检测限为 0.5~2.0 ng/g。

近年来,越来越多的研究聚焦于开发被官能团修饰的 MOF, 以增强 MOF 的选择性和灵敏性。Li 等^[43]制备了 环糊精修饰的 MOF(CD-MOF)并将其作为 SPE 的吸附剂萃 取猪肉样品中的 SA, CD-MOF 显示了很强的选择性和吸附 能力。Liu 等^[52]制备了一种半胱氨酸修饰的亲水性 MOF 材料 UiO-66(NH2)@Au-Cys,用于富集苹果汁中的棒曲霉素,由于半胱氨酸含有丰富的结合位点(胺、羟基和羧基),所制备的纳米材料对棒曲霉素具有很强的吸附作用。 Khoobi 等^[53]为了改善吸附剂的微观结构,采用了在层状 双氢氧化物(layered double hydroxides, LDHs)表面原位生 长 ZIF-8制备多孔纳米颗粒 Zn-Al LDH/ZIF-8的新方法,将 Zn-Al LDH/ZIF-8 作为 SBSE 的吸附剂能够高效富集牛奶 中的苄青霉素,其检测限可达 0.05 µg/L。

总而言之, MOF 被认为是从食品基质中提取目标分析物的合适吸附剂, 在样品前处理中起着重要作用。与裸露的 MOF 相比, 功能化 MOF 在富集食物污染物方面表现出更优越的性能, 可以显著提高选择性和灵敏度。

2.2.2 磁性 MOF

MSPE 是一种基于磁性相互作用的固相萃取技术,在 该过程中,磁性材料被分散在含有分析物的溶液中以吸 附目标分析物,随后通过施加外部磁体进行磁性分离, 再利用合适的洗脱剂解吸目标分析物以达到富集、净化 的目的。MSPE 结合了磁分离和 SPE 的优点,具有操作简 单、快速、环保、易于重复利用等特点^[64,65]。Huo 等^[66] 首先提出了磁性 MOF 在 MSPE 中的应用,将磁性 MOF 材料 Fe₃O₄@SiO₂@MIL-101 用作 PAHs 的吸附剂,结合 HPLC 建立水中邻苯二甲酸盐(phthalates, PAHs)的检测方 法。此后磁性 MOF 被广泛用于食品安全领域中多种污染 物的吸附。

Liang 等 ^[44] 制 备 了 磁 性 MOF 材 料 Fe₃O₄@SiO₂-GO/MIL-101(Cr),结合高效液相色谱法(high performance liquid chromatography, HPLC)检测大米中的三 嗪除草剂,在最佳吸附条件下 LOD 可达 0.010~0.080 µg/kg; Yamini 等^[48]合成了 Fe₃O₄@TMU-24 作为吸附剂,结合 GC-FID 建立了瓶装矿泉水中塑化剂的检测方法,在最佳 吸附条件下,该方法在 0.5~250 µg/L 范围内呈现良好的线 性关系,其 LOD 可达 0.2~0.4 µg/L; Zhou 等^[39]报道了一种 简单的两步溶剂热法合成 Fe₃O₄@PEI@MOF-5,其中 Fe₃O₄@PEI和 MOF-5 通过化学键连接,MOF-5 上丰富的芳 环结构为 π - π 堆积、疏水作用和氢键作用提供了可能, Fe₃O₄@PEI@MOF-5 已被成功用于从鱼肉中高效富集孔雀 石绿和结晶紫,所开发的方法具有良好的选择性、较低的 检测限(0.08~0.3 ng/mL)和良好的精密度。

总而言之, MOF 材料由于较大的比表面积、孔径和机 械阻力在食品样品前处理中具有良好的应用前景, 但是由 于其配位结构容易坍塌, 某些 MOF 在水溶液中不稳定, 设 计和合成具有更高化学稳定性、热稳定性、良好的选择性 和可重复利用的新型 MOF 材料是未来的研究目标。

2.2.3 MOF 衍生的纳米多孔碳材料

MOFs具有大孔容、多变结构、高比表面积和丰富的 有机配体等特点,使其成为合成具有多样孔隙率和孔径结

	Table 2 Applicati	on of MOF and MOF	-derived materials in f	ood sample pretreatmen	t		
金属有机框架材料	分析物	前处理方法	检测技术	线性范围	检出限	基质	参考文献
Fe ₃ O ₄ @PEI-MOF-5	孔雀石绿,结晶紫	MSPE	UHPLC-MS	1∼500 ng/mL	0.30 ng/mL	鱼类	[39]
MIL-88(Fe)/GO	邻苯二甲酸盐	SPME	GC-FID	1.7~500 ng/g	0.5~2.0 ng/g	植物油	[40]
Uio-66/PAN	植物激素	PT-SPE	HPLC-FLD	0.06~60 ng/mL	0.01~0.02 ng/mL	蔬菜样品	[41]
ZIF-90 (Zn), MOF-199 (Cu), MIL-101 (Cr), MOF-5 (Zn)	多氯联苯	SPME	GC-MS	0.01~600 ng/L	0.0013~0.053 ng/L	植物油	[42]
CD-MOF(MIL-101)	磺胺类	SPE	HPLC-UV	10~1000 ng/mL	0.32~2.0 ng/mL	猪肉、鱼肉和鸡肉	[43]
Fe ₃ O ₄ @SiO ₂ -GO/MIL-101(Cr)	三嗪类除草剂	MSPE	HPLC-UV	0.01∼0.08 µg/kg	2.0~1000 μg/kg	大米	[44]
HKUST-1	二甲四氯苯氧乙酸	d-SPE	IMS	0.035~0.2 μg/L	0.01 μg/L	大米和西红柿	[45]
MIL-101 (Cr)	三嗪类除草剂	MEPS	HPLC-MS/MS	2.0~200 ng/g	0.01~0.12 ng/g	玉米、大米和高粱	[46]
Cu@graphitic carbon cages	氟喹诺酮类药物	DSPE	HPLC-UV	l∼500 ng/g	0.23 ng/g	鸡肌肉组织	[47]
TMU-23, TMU-24	塑化剂	MSPE	GC-FID	0.5~250 μg/L	0.2~0.4 μg/L	瓶装矿泉水	[48]
$ m ZnFe_2O_4/carbon$	有机氯农药	M-DµSPE	GC-ECD	0.05-100 ng/g	0.005~0.3 ng/g	新鲜胡椒粉	[49]
Zn/Co-MNPC	有机磷农药	MSPE	GC-FPD	0.05∼100 μg/L	0.018~0.045 μg/L	水果	[50]
ZIF-67	咖啡因	SBSE	HPLC-UV	0.2~200 μg/L	0.05 µg/L	饮料	[51]
UiO-66(NH ₂)@Au-Cys	展青霉素	DSPE	HPLC-UV	а	e	苹果汁	[52]
LDHs@ZIF-8	青霉素	SBSE	HPLC-UV	0.5~500 μg/L	0.05 µg/L	牛奶	[53]
MIL-101(Cr)-NH ₂	抗生素	SPME	HPLC-MS/MS	10~50000 ng/L	0.2~4.6 ng/L	鱼	[54]
Zinc-based MOF	有机磷农药	DSPE	GC-FID	0.1~100 ng/mL	0.03~0.21 ng/mL	果汁	[55]
(Ti, Cr, Al, Zn, Mg)-MOF, y-CD-MOF, ZIF-8-MOF	胆固醇	ы	GC-FID	8	e	油/脂肪	[56]
C-(C₃N₄@MOF)	有机磷农药	SPME	GC–MS	0.69~3000 ng/g	0.23~7.5 ng/g	水果和蔬菜	[57]
MOF-DES/MIPs	邻苯二甲酸酯类	HFLMP-SPME	GC-FID	0.01~1000 μg/L	0.008~0.03 μg/L	油、酸奶、矿泉水	[58]
MOF 1	四环素	9	a	8	6	乳制品	[59]
MOF-polymer	磺胺类	UHPLC-MS/MS	SPME	0.015~25.0 μg/L	1.3~4.7 ng/L	鸡肉和鱼肉	[09]
Zr-based MOF	有机汞			2.0~500 ng/mL	0.022~0.067 ng/mL	鱼、铁皮石斛	[61]

表2 金属有机框架及其衍生材料在食品样品前处理中的应用

第11卷

注:a:无。

	Table 3	表 3 CO Application of C	IFs 及其衍生材料在食 OFs and COFs-derive	品样品前处理中的应用 d materials in food sam	ole pretreatment		
共价有机框架材料	分析物	前处理方法	检测技术	线性范围	检出限	基质	参考文献
CTpBD	下窗	SPE	ICP-MS	0.05~25 μg/L	2.1∼21.6 ng/L	牛奶	[73]
Ni/CTF-SO ₃ H	多菌灵,噻苯咪唑	MSPE	HPLC-UV	4.10~1000 μg/kg	1.23~7.05 μg/kg	水果、蔬菜、果汁	[74]
$Fe_3O_4@COF(TpBD)$	多环芳烃	MSPE	HPLC-DAD	l∼100 ng/mL	0.83~11.7 ng/L	熏肉、鱼、咖啡	[75]
TpBD	氯酚	HS-SPME	GC-MS	1~250 μg/kg	0.3~1.8 μg/kg	蜂蜜、黄桃罐头	[76]
Fe ₃ O ₄ @SiO ₂ -PTMS@CTF	对羟基苯甲酸酯	M-SPE	HPLC-UV	0.1~500 μg/L	0.02 μg/L	母系	[77]
SNW-1@PAN	磺胺类	PT-SPE	HPLC	5∼125 ng/mL	1.7~2.7 ng/mL	函	[78]
Fe ₃ O ₄ @COF	内分泌干扰物质	MSPE	HPLC-FLD	0.5~1000 ng/mL	0.08~0.21 ng/mL	茶饮料	[79]
Fe ₅ O ₄ @COF	磺胺类	MSPE	HPLC-VWD	1∼500 ng/mL	0.2~1 ng/mL	牛奶、猪肉、鸡肉、虾	[80]
Fe ₃ O ₄ @COF(TpBD)@Au-MPS	氟喹诺酮类药物	MSPE	HPLC-MS/MS	1~200 μg/kg	0.1~1.0 μg/kg	猪肉、鸡肉、牛肉	[81]
Fe ₃ O ₄ @COF(TpBD)	内分泌干扰物质	MSPE	HPLC-FLD	1.4~8.7 μg/L	10~1000 μg/L	鸡肉、猪肉、虾	[82]
Fe ₃ O ₄ @TbBd@ZIF-8	镇静剂	MSPE	HPLC-MS/MS	0.03∼70 µg/kg	0.04~0.2 μg/kg	Ŕ	[83]
COF-(TpBD)/Fe ₃ O ₄	邻苯二甲酸盐	MSPE	GC-MS/MS	10~1000 μg/L	0.005~2.748 μg/L	饮料	[84]
Fe ₃ O ₄ @TpPa-F4	全氟化合物	FM-SPE	HPLC-MS/MS	0.1~250 ng/L	0.005~0.05 ng/L	牛奶	[85]
CTC-COF@MCNT	杂环胺类化合物	MSPE	UHPLC-MS/MS	0.05~50 ng/g	0.0058~0.025 ng/g	烤牛肉、炸鸡	[86]
$Fe_3O_4@COF-(NO_2)_2$	新烟碱类	MSPE	HPLC-UV	0.1~30 ng/mL	0.02~0.05 ng/mL	莱滤	[87]
COF-DtTb	有机磷农药	MSPE	HPLC-MS/MS	1~200 μg/L	0.002~0.063 μg/kg	水果	[88]
Fe ₃ O ₄ @COF(TpDA)	植物生长调节剂	MSPE	HPLC-DAD	50~2000 μg/L	4.68~7.51 μg/L	水果和蔬菜	[68]

构的纳米多孔碳材料的理想模板,其中由 Zn(II)或 Co(II) 与咪唑基配体(2-甲基咪唑)构成的 ZIF 是合成纳米多孔碳 的合适前体^[65]。此外 MOFs 的有机配体含有大量碳元素, 因此无需额外添加碳源,直接碳化 MOFs 即可得到纳米多 孔碳材料。纳米多孔碳材料由于比前体 MOF 具有更高的 稳定性,且具有优异的热稳定性和高表面积,已经被广泛 用于催化、药物递送、吸附等领域^[67]。

近年来,基于 MOFs 的纳米多孔碳材料也被用于食品 样品前处理中。Xia 等^[49]报道了基于 ZIF 的磁性纳米多孔 碳,以 Zn-Fe-ZIF 为前体采用一步溶剂热法合成多孔 ZnFe₂O₄/C 复合材料,将其用作 MSPE 吸附剂从不同新鲜 辣椒样品中富集有机氯农残,由于 ZnFe₂O₄的 Fe³⁺和 OCPs 的 Cl⁻之间存在较强的相互作用,该材料针对有机氯农药 (organochlorine pesticides, OCPs)显示了高吸附效率。Wang 等^[47]通过在 N₂ 中碳化 Cu-MOF 制备了独特的 3D 多孔 Cu@graphitic carbon cages,将其作为 DSPE 的吸附剂富集 鸡肉和鱼肉样品中的氟喹诺酮,由于氟喹诺酮类药物 (fluoroquinolones, FQs)中的羟基与 Cu@graphitic carbon cages 中含 O 基团能够形成氢键作用,且石墨碳层有利于 FQs 的富集,Cu@graphitic carbon cages 对 FQs 显示了良好 的吸附性能。

MOF 衍生的纳米孔碳材料因独特的性能已在食品基 质中污染物的富集方面显示良好的应用潜力,然而该材料 在稳定性、制造成本和选择性等方面仍然存在许多亟待解 决的问题,还需要对 MOFs 材料进行深入研究以有效解决 上述问题。

2.3 共价有机框架材料

COFs 材料是由 Yaghi 等^[68]于 2005 年报道的一类新型 的具有 2D 或 3D 结构的多孔晶体材料。COFs 由轻质元素 (C、N、O、B、Si等)构成的有机构建单元组合而成,有机 配体之间通过强共价键连接^[69]。COFs 材料具有高度可调 的孔隙率、有序的通道、可预测的结构、易于功能化、较 大的比表面积(114~1590 m²/g)、良好的热稳定性和化学稳 定性等多种特性,在气体存储、光催化、传感器及分离科 学等领域引起了广泛的兴趣^[70-72]。近年来, COFs 作为新型 吸附剂在食品样品前处理领域受到了关注, 其较强的疏水 性、氢键作用和 π-π 堆积作用能够提高对目标化合物的吸 附能力, 功能化的 COFs 材料由于能够提高对目标分析物 的选择性以及扩宽其检测范围也备受关注。一些 COFs 材 料如 TpBD 和 CTF 可以直接被用于 SPE, 此外, 磁性 COFs 复合材料和功能化磁性 COFs 材料如 Fe₃O₄@TpBD 和 Fe₃O₄@COF(TpBD)@Au-MPS也被开发作为MSPE的吸附 剂。表3总结了 COF 应用于食品样品前处理的工作。

2.3.1 COFs 作为 SPE 的吸附剂
 2018 年, Shahvar 等^[77]通过氰尿酰氯和芳族结构单元

之间发生 Friedel-Crafts 烷基化反应合成三嗪类共价有机框 架材料,利用其作为 SPE 吸附剂富集母乳中的对羟基苯甲酸酯,三嗪类共价有机框架材料主要通过 π-π 相互作用、 疏水作用及氢键作用对分析物进行高效富集。Yan 等^[78]将单体三聚氰胺和对苯二甲酸形成的 SNW-1 掺入聚丙烯腈 纳米纤维中,合成的纳米纤维具有低背压和传质迅速的特点,将其用作 PT-SPE 的吸附剂,结合 HPLC 检测鸡肉和猪 肉样品中的磺胺类(sulfonamides, SAs),在最佳吸附条件下,所建立的方法在 5~125 ng/mL范围内呈现良好的线性关系,其 LOD 可达 1.7~2.7 ng/mL。

2.3.2 磁性 COFs 作为 MSPE 的吸附剂

Zhang 等^[85]通过单体介导的原位生长策略合成了氟 化磁性 COFs(Fe₃O₄@TpPa-F₄),该材料具有较大的比表面 积、较高的氟内含物(4.85%)、较强的磁性响应能力、良好 的化学稳定性和热稳定性, 是全氟化合物的理想吸附剂, 将其用作氟化磁固相萃取的吸附剂,结合 HPLC-MS/MS 检测牛奶样品中的超痕量全氟化合物,在最优条件下,该 方法在 0.1~250 ng/L 范围内对 6 种 PFC 具有良好的线性关 系(r²≥0.9952)、其 LODs 为 0.005~0.05 ng/L。我们课题组首 次合成了具有核壳结构的 Fe₃O₄@COF(TpBD),将其用于 从烟熏猪肉、烟熏培根、烤鱼和咖啡样品中吸附多环芳烃 (polycyclic aromatic hydrocarbons, PAHs)^[75], 并从肉类样 品中吸附内分泌干扰物质(endocrine disrupting chemicals, EDCs)^[82], Fe₃O₄@COF(TpBD)因具有高比面积、高孔隙率 和较好的磁性而表现出优异的吸附性能,且 COFs 具有的 疏水作用、氢键作用和 π-π 堆积作用提高了目标化合物的 富集能力。

2.3.3 功能化 COFs 作为 MSPE 的吸附剂

相较于其他纳米材料, COF 具有一些独特的优势如在 酸性或碱性条件下的化学稳定性,然而 COF 同样存在一些 缺陷如π共轭体系使其具有强疏水性, 这将会限制 COF 在 亲水性分析物吸附方面的应用,因此需要通过进一步官能 团修饰以提高 COF 的吸附能力。Zhao 等^[74]先合成磺酸功 能化 CTF-SO₃H, 随后采用简单温和的磁化策略在 CTF-SO₃H上原位生长Ni纳米颗粒,制备了磁性无机-有机 材料杂交的Ni/CTF-SO₃H,该材料可以通过亲水-亲脂平衡 和离子交换双重作用高效富集目标分析物,将其用作 MSPE 的吸附剂,结合 HPLC-UV 分析蔬菜、水果和果汁样 品中的苯并吡唑杀菌剂,所建立方法的 LODs 为 1.23~7.05 μg/kg。2019年,我们课题组合成了系列功能化 COF 材料 用于食品样品前处理研究^[81,83]。Wen 等^[81]利用 Au-S 键合 成 Fe₃O₄@COF(TpBD)@Au-MPS, 将其用于肉类样品中痕 量亲水性氟喹诺酮的高效富集, Fe₃O₄@COF(TpBD)@ Au-MPS 通过 π-π 作用、氢键作用和静电作用显示了良好 的吸附效果,修饰的 COF 不仅保留了其固有特性,而且提 高了对目标分析物的选择性。Liu 等^[83]利用 ZIF-8 修饰 Fe₃O₄@TbBd 合成 Fe₃O₄@TbBd@ZIF-8 复合材料,将其用 作 MSPE 的吸附剂,结合 HPLC-MS/MS 建立了肉类样品中 镇静剂的检测方法,该方法在 0.03~70 μg/kg 范围内呈现良 好的线性, LOD 可达 0.04~0.2 μg/kg。

总而言之, COF 被看作食品样品前处理的理想吸附剂, 但是 COF 仍然存在一些缺陷,例如有限的选择性和固有的 疏水性限制了它们在亲水性分析物吸附方面的应用,因此 提高 COF 的选择性和功能性是 COF 在食品样品前处理应 用的发展方向。

2.4 分子印迹聚合物

分子印迹技术(molecularly imprinted technology, MIT) 作为一种新型高效的分离和分子识别技术,是材料科学、 高分子科学、生物化学等学科的交叉领域。分子印迹聚合 物材料通过引入目标物模板分子进行聚合,再对模板分子 进行洗脱,并在聚合物中留下模板分子空穴结构和大小的 "印迹",这种"印迹"结构能够特异性识别目标分子及其结 构类似物。与天然识别材料(如抗体)相比,分子印迹聚合物 不仅具有高效的结合作用,还具有结构预定型、制备简单、 成本低、稳定性好、重复使用率高等优点,因而已被广泛 应用于分析化学领域,特别是选择性分离和复杂基质中痕 量分析物的富集^[90]。表 4 总结了 MIPs 以及修饰的 MIPs 在食品样品前处理中的应用。

已有多种分子印迹聚合物被应用于食品样品前处理 中,例如,Qiu等^[91]以4-乙烯苯硼酸为功能单体,在阳极氧 化铝纳米孔内基于共价作用合成了3-氯-1,2-丙二醇的分子 印迹纳米管膜,一系列吸附实验表明分子印迹对3-氯-1,2-丙二醇具有良好的吸附能力和选择性,为了评估分子印迹 纳米管膜的适用性,建立了以AAO@MIP作为吸附剂结合 GC-MS的检测方法用于植物油中氯丙醇的测定,3-氯-1,2-丙二醇和1,3-二氯-2-丙醇的检测限分别为0.072和0.13 µg/L; Negarian等^[92]分别以甲基丙烯酰胺和丙烯酰胺作为 功能单体制备核-壳结构的林可霉素 MIPs,将其作为 SPE 吸附剂,结合 HPLC-UV 检测巴氏杀菌牛奶样品中的林可 霉素,所建立的方法在0.08~2 µg/mL 范围内呈现良好的线 性,其 LOD 可达0.02 µg/mL。

此外,大量磁性分子印迹聚合物(magnetic molecularly imprinted polymer, MMIPs)也被用于食品样品前处理,MMIPs 不仅具有特异结合功能,而且具有磁性易于分离。Bagheria 等^[93]以丙酰胺为模板,通过绿色合成制备新型分子印迹聚合物 DMIP,将其作为 MSPE 的吸附剂,结合 HPLC 检测饼干样品中的丙烯酰胺,在最优条件下,所建立的方法在 5.0~5000.0 µg/kg 范围内呈现良好的线性关系,LOD 可达 1.3 µg/kg。Zhao 等^[94]以 2-羟基烟酸和 6-羟基烟酸作为双重模板,以 4-乙烯吡啶作为功能单体,制备核-壳磁性分子印迹聚合物,将其作为磁性分散固相萃

取(magnetic dispersion solid-phase extraction, MDSPE)的吸 附剂,结合 HPLC-MS/MS 灵敏检测果汁样品中的棒曲霉 素,在最优条件下,建立的方法在 0.5~100 µg/L 的范围内 呈现良好的线性关系,LOD 达到 0.1 µg/L。

人工合成的具有特定识别功能的分子印迹聚合物已 被证实是富集目标化合物的有效方法,其在食品样品前处 理中显示了巨大的应用潜力,与其他方法比较,分子印迹 聚合物对目标分析物具有高效的选择性。

2.5 其他新兴纳米材料

此外,还有许多其他新型材料被用于食品样品前处 理中,如聚多巴胺衍生材料、有机聚合物材料等,表 5 总 结了这些材料在食品样品前处理应用中的研究。 2.5.1 聚多巴胺

多巴胺是一种富含氨基、羟基且具有良好亲水性的神 经递质,在室温条件下,它可以在弱碱性溶液中自发聚合 成聚多巴胺(polydopamine, PDA), PDA 可以涂覆多种类型 材料如金属氧化物、聚合物、MOF和 CNT。此外, PDA 具 有良好的生物相容性、环境稳定性、高度离域的 π-π 共轭 体系以及在水溶液中的优异分散性,因此 PDA 在食品样 品前处理的新型吸附剂材料开发方面具有广阔的应用前景 ^[126]。Yavuz 等^[111]制备了核-壳磁性 PDA 纳米颗粒, 用作磁 性分散固相萃取(magnetic dispersive solid-phase extraction, MdSPE)的吸附剂, 高效富集食品样品中的铜离子; Du 等 ^[112]通过将 PDA 和 Mg/Al 层状双氢氧化物涂覆到 NiFe2O4 纳米颗粒上合成了新颖的三层复合纳米材料 NiFe₂O₄@PDA@Mg/Al-LDH,该材料克服了传统的基于 Fe 纳米颗粒材料的低表面积和易于团聚的问题, 且 PDA 较高的分散性和 Mg/Al 层状双氢氧化物较大的比表面积有 利于有机磷农残的高效快速吸附,在最优条件下,基于 NiFe2O4@PDA @Mg/Al-LDH 的 MSPE 结合高效液相色谱-二极管阵列检测法(high performance liquid chromatography diode array detection, HPLC-DAD)建立的检测方法针对果 汁中有机磷农残的 LOD 可达 0.06~0.13 μg/L。

2.5.2 有机聚合物

多孔有机聚合物(porous organic polymer, POPs)是通 过低重量元素(C, B, O, N和 Si等)之间的共价键将有机单 体整合形成的 2D或 3D多孔结构, POPs呈现了多孔材料和 聚合物的优良性能,具有耐酸耐碱性能、高孔隙率和大表 面积,因此受到越来越多的关注。根据单体及合成途径的 不同, POPs可以分为超交联聚合物、固有微孔性聚合物、 共价有机框架和共轭微孔聚合物,其中超交联聚合物因具 有永久微孔性、低成本、易于功能化等优点在有机污染物 吸附等领域广泛应用,且由于其理化特性,超交联聚合物 可以作为良好的 SPME 纤维涂层材料^[113,115]。Wang 等^[113] 利用 1,4-苯二甲醇单体发生 Friedel-Crafts 烷基化自缩合反

		141				
		基质	饼干	矿泉水和葡萄汁	动物源性食品	植物油
理中的应用	food sample pretreatment	线性范围	5~5000 μg/kg	25~750 ng/mL	0.001~2.5 mg/L	$0.001 \sim 1.2 \text{ mg/L}$
;修饰的 MIPs 材料在食品样品前处	Ps and modified MIPs materials in 1	检出限	1.3 μg/kg	а	0.02~0.1 μg/L	0.072~0.13 us/f.
表 4 MIPs 及	ble 4 Application of MII	检测技术	HPLC-UV	HPLC-UV	HPLC-MS/MS	GC-MS
	Ta	前处理方法	MSPE	PT-MIP-SPE	SPE	c.

分析物	前处理方法	检测技术	检出限	线性范围	基质	参考文献
丙烯酰胺	MSPE	HPLC-UV	1.3 μg/kg	5~5000 µg/kg	饼干	[93]
阿维菌素,埃普霉素,莫西替丁	PT-MIP-SPE	HPLC-UV	ß	25~750 ng/mL	矿泉水和葡萄汁	[95]
磺胺类	SPE	HPLC-MS/MS	0.02~0.1 μg/L	$0.001 \sim 2.5 \text{ mg/L}$	动物源性食品	[96]
3-氯-1, 2-丙二醇, 1,3-二氯-2-丙醇	я	GC-MS	0.072∼0.13 µg/L	0.001~1.2 mg/L	植物油	[91]
妆药	а	ISd	≤0.60 μg/L	10~1000 μg/L	水果	[76]
双酚 A	SPE	HPLC-DAD	1.3~5.2 ng/mL	0.02~2 mg/mL	牛奶、食用油、酱油	[86]
双氰胺	MISPE	HPLC-UV	0.08 μg/mL, 0.10 μg/mL	1~100 μg/mL	牛乳、奶粉	[66]
三嗪类除草剂	SPE	HPLC-MS/MS	0.5~8.8 μg/kg	10~200 µg/kg	玉米、小麦、棉籽	[100]
苯磺隆	MISPE	HPLC	1.5 ng/kg	8	大豆	[101]
酪胺	SPE	HPLC	5 µg/kg	20~2000 μg/kg	发酵肉	[102]
玉米赤霉烯酮	SPE	HPLC-FLD	2.09~4.16 ng/kg	6.25~250 ng/kg	谷物样品	[103]
植物生长调节剂	SPE	GC-FID	0.012∼0.023 µg/g	0.04~40 μg/mL	水果、蔬菜	[104]
大环内酯类抗生素	SPME	ESI-MS	0.003~0.05,1.1~5.1, 1.9~15.8 ng/g	0.05~100, 10~1000, 20~2000 ng/g	饮用水、蜂蜜、牛奶	[105]
林可霉素	CSMISPE	HPLC-UV	0.02 µg/mL	0.08~2 µg/mL	牛奶	[92]
亚硝胺	SPE	HPLC-MS/MS	0.2~0.7 ng/L	3	饮用水、饮料	[106]
吡啶羧酸类除草剂	SPE	HPLC-MS/MS	0.124 μg/L	$1{\sim}50\ \mu g/L$	牛奶	[107]
生长素	SPME	HPLC-UV	0.5 µg/L	$1{\sim}100~\mu g/L$	烟草	[108]
展青霉素	MDSPE	HPLC-MS/MS	0.1 µg/L	0.5~100 μg/L	果汁	[94]
杂色曲霉素	SPE	HPLC-DAD	1.1 µg/kg	5~500 µg/kg	小麦	[109]
玉米赤霉烯酮	μ-SPE	HPLC-FLD	2.5 ng/mL	10~200 ng/mL	谷物样品	[110]
涟: a: 无。						

吸耐利 分析物 ሰ处理力法 检测技术 检出報 基性 基性 基性 基性 基性 基性 基件 基 基 基 基 基 基 基 基 基 基 基 基 基 基 基			表 5 Table 5 Applicat	其他新兴纳米材料在 tion of othernovel nano	食品样品前处理中的应 materials in food samp	反用 de pretreatment		
J@PDA 何 MdSPE FAAS 0.22 μg/L 6 fftgg.Lig.Lig.Lig.Lig.Lig.Lig.Lig.Lig.Lig.L	反附剂	分析物	前处理方法	检测技术	检出限	线性范围	基质	参考文献
DA@MgA1LDH 有机碱疾药 MSPE HPLC-DAD $0.6-0.13 \mu gL 0.5-500 \mu gL \kappa \mp H P-DDM 有机碱κ药 SPME GC-ECD 0.38-0.14 \mu gC 0.9-50 \mu gC \pi \mp H P-DDM 有机碱κ药 SPME GC-ECD 0.38-0.14 \mu gC 0.9-50 \mu gC \pi \mp H P-DDM \pi \pi \pi SPME UPLC-MSMS 0.7-3.1 \mu L 0.00-1.0 \mu gL \pi \pi \times \Lambda \pi reic CMP \pi \pi \pi SPE HPLC-DAD 0.06-0.11 \mu gL 0.0-10 \mu gL \pi \pi \times \Lambda \pi reic CPA \pi \pi \pi SPE HPLC-DAD 0.06-0.11 \mu gL 0.0-10 \mu gL \pi \pi \times \Lambda \pi reic PA \pi \pi \pi SPE HPLC-DAD 0.06-0.11 \mu gL 0.2-10 \mu gL \pi \pi \times \Lambda \pi reic PA \pi \pi \pi \pi SPE HPLC-DAD 0.06-0.11 \mu gL 0.2-10 \mu gL \pi \pi \times \Lambda \pi reic PA \pi \pi \pi \pi SPE HPLC-DAD 0.06-0.10 \mu gL 0.2-10 \mu gL \pi \pi \pi \pi \pi \pi \pi^{-1} reic PA M \pi \pi \pi \pi^{-1} M \pi \pi \pi^{-1} $	O4@PDA	铺	MdSPE	FAAS	0.22 μg/L	0.015~0.75 mg/L	有机婴儿食品、麦片粥、通心粉、蜂蜜	[111]
D-BDM fhlig Krdj SPME GC-ECD 0.08-0.14 mg/d $0.19-50 \ mg/d$ mg/fh , f_{fh} ,	DA@Mg/Al-LDH	有机磷农药	MSPE	HPLC-DAD	0.06~0.13 μg/L	0.5~500 μg/L	水果汁	[112]
netic CNP 系商利 MSPE UPLC-MSMS $0.7-31 \mathrm{ngL}$ $0001-20 \mathrm{ngL}$ k^{k} GTPA 来服 SPE HPLC-DAD $0.66-0.11 \mathrm{ngL}$ $0.4-160.0 \mathrm{ngG}$ m dTPL kmm % SPE HPLC-UV $0.66-0.11 \mathrm{ngL}$ $0.2-100 \mathrm{ngL}$ k^{k} Azo-POP × km SPE HPLC-UV $0.66-0.11 \mathrm{ngL}$ $0.2-100 \mathrm{ngL}$ k^{k} Azo-POP × km SPE HPLC-UV $0.66-0.11 \mathrm{ngL}$ $0.2-100 \mathrm{ngL}$ k^{k} Azo-POP × km SPE HPLC-UV $0.05-0.10 \mathrm{ngL}$ k^{k} Azo-POP × km SPE HPLC-UV $0.05-0.10 \mathrm{ngL}$ k^{k} MOP Jawed GC-FDJ $0.12-0.19 \mathrm{ugL}$ $0.5-2.00 \mathrm{ugL}$ k^{k} SGMPS@PMA Makef MG-SE $0.12-0.19 \mathrm{ugL}$ $0.5-2.00 \mathrm{ugL}$ k^{k} SGMPS@PMA Makef MSPE HPLC-UV $0.55-0.60 \mathrm{ugL}$ $0.5-5.50 \mathrm{ugL}$ k^{k}	CP-BDM	有机氯农药	SPME	GC-ECD	0.058~0.14 ng/g	0.19~50 ng/g	西红柿、黄瓜、大白菜	[113]
HCTPA $\#$ SPE HPLC-DAD 0.06-0.15 ng/g 0.4 -1600 ng/g Π , Π , Π , Π , Π , mPMF $\#$ SPE HPLC-UV 0.06-0.11 µg/L 0.2-100 µg/L $\#$ Azo-POP $\#$ SPE HPLC-UV 0.06-0.11 µg/L 0.2-100 µg/L $\#$ Azo-POP $\#$ SPE HPLC-UV 0.05-0.30 ng/g 0.4-1600 ng/g $\#$ Azo-POP $\#$ SPE HPLC-UV 0.05-0.30 ng/g 0.4-1600 ng/g $\#$ Azo-POP $\#$ SPE HPLC-UV 0.05-0.30 ng/g 0.4-1600 ng/g $\#$ ASO $\#$ $\#$ H G G G $\#$ MOP $\#$ $\#$ H G G G $\#$ $\#$ MOP $\#$ H G G G G H MOP $\#$ H H G G G G H MISC-UF_0 M <	gnetic CMP	杀菌剂	MSPE	UPLC-MS/MS	0.27~3.1 ng/L	$0.001{\sim}20~\mu g/L$	蔬菜、水果	[114]
mbMF 植物激素 SPE HPLC-UV 0.06-0.11 μg/L 0.2-100 μg/L 操作 Azo-POP 苯脲 SPE HPLC-UV 0.05-0.30 ng/g 0.4-1600 ng/g 蔬菜、+ザ奶、果汁 Azo-POP 苯脲 SPE HPLC-UV 0.05-0.30 ng/g 0.4-1600 ng/g 蔬菜、+ザ奶、果汁 MOPs 三唑类杀菌剂 MSPE GC-FD 0.12-0.19 μg/L 0.5-200 μg/L 蔬菜、+ザ奶、果汁 MOPs 三唑类杀菌剂 MSPE GC-FD 0.12-0.19 μg/L 0.5-200 μg/L 蔬菜 MOPs ボ丹紅 MaSPE Md-SPE GC-FD 0.12-0.19 μg/L ガボ MSOMPs@PMAA 有机磷水σ MSPE HPLC-UN 0.5-0.00 ng/L 0.5-0.00 ng/L ガボ MSOMPs@PMAP 高砂型 MSPE HPLC-UN 0.5-0.00 ng/L 0.5-0.00 ng/L ガボ MNFsM 耐砂素 MSPE HPLC-UN 0.55-0.00 ng/L 0.5-100 ng/L ガボ MNFsM 耐砂素 MSPE HPLC-UN 0.55-0.00 ng/L 0.5-100 ng/L ガボ MNFsM 耐砂素 MSPE HPLC-UN<	HCTPA	茶願	SPE	HPLC-DAD	0.06~0.15 ng/g	0.4~160.0 ng/g	西瓜、西红柿、黄瓜	[115]
Aco-POP 苯脲 SPE HPLC-UV 0.5-0.30 ng/g 0.4-160.0 ng/g 蔬菜、牛奶、果汁 MOP 三唑类杀菌剂 MSPE GC-FID 0.12-0.19 µg/L 0.5-200 µg/L 蔬菜、牛奶、果汁 MOP 三唑类杀菌剂 MSPE GC-FID 0.12-0.19 µg/L 0.5-200 µg/L 蔬菜 SG@NPS@PMA 有机磷衣药 Md-SPE GC-FDJ 0.12-0.19 µg/L 0.5-250 µg/g 薏菜 SG@NPS@PMA 有机磷衣药 Md-SPE GC-FDJ 0.12-0.19 µg/L 0.5-250 µg/g 薏菜 SG@NPS@PMA 新丹红-LUV MG-SE 3.6-3.8 µg/kg 25-250 µg/L 薏菜 SG@NPS@PMA 新丹亚-LUV NSPE HPLC-DAD 0.56-0.60 ng/L 0.5-100 µg/L 平切 CuMes 磺酸类 SPME HPLC-UV 0.77-0.350 µg/L 0.5-150 µg/L 平切 @NON-NH 帕斯 植物生 SPME HPLC-UV 0.77-0.350 µg/L 0.5-150 µg/L 平切 @NON-NH 帕斯 帕斯 NF HPLC-UV 0.77-0.350 µg/L 0.5-150 µg/L 平切 @NON-NH 帕斯	mPMF	植物激素	SPE	HPLC-UV	0.06~0.11 µg/L	$0.2{\sim}100~\mu g/L$	果汁	[116]
MOPs 三唑类杀菌剂 MSPE GC-FID 0.12-0.19 µg/L 0.5-200 µg/L 蔬菜 SG@MPS@PMAA 有机磷农药 Md-SPE GC-FID 0.12-0.19 µg/L 0.5-200 µg/g 董森 SG@MPS@PMAA 有机磷农药 Md-SPE GC-FID 0.5-0.60 ng/g 25-250 µg/g 董春 dHS-LuFe_JO4 苏丹丘11 Y 染料 MSPE HPLC-DAD 0.56-0.60 ng/g 5-4000 ng/g 博春 CuMeS 磺胺类 SPME HPLC-DAD 0.56-0.60 ng/g 5-4000 ng/g 博春 CuMeS 磺胺类 SPME HPLC-UV 0.077-0.350 µg/L 0.5-150 µg/L 作药 @MON-NH2 핵板生 NSPE HPLC-UV 0.07-0.030 µg/L 0.5-160 µg/L #打 MNNSM 楠物生 MSPE HPLC-UV 0.015-0.030 µg/L 0.5-100 µg/L #打 MNNSM 楠物生 SPE HPLC-UV 0.015-0.030 µg/L 0.5-100 µg/L #打 MNNSM 楠物生 MSPE HPLC-UV 0.015-0.030 µg/L 0.5-100 µg/L #T MNNSM MSPE UPLC-MS/NS	Azo-POP	苯脲	SPE	HPLC-UV	0.05~0.30 ng/g	0.4~160.0 ng/g	蔬菜、牛奶、果汁	[117]
DS@MPS@PMA 有机磷农药 Md-SPE GC-FPD, GC-MS 3.6-3.8 µg/kg 25-250 µg/kg 草莓 dHS-CuFe_1O4 苏丹红 1-1V 染料 MSPE HPLC-DAD 0.56-0.60 ng/g 5-4000 ng/g 萬君 CuMeS 磺酸类 SPME HPLC-UV 0.57-0.350 µg/L 0.5-150 µg/L 年奶 CuMeS 磺酸类 SPME HPLC-UV 0.077-0.350 µg/L 0.5-150 µg/L 年奶 @MON-NH2 协分泌干扰 MSPE HPLC-UV 0.015-0.030 µg/L 0.5-150 µg/L 平奶 @MON-NH2 物质 MB HPLC-UV 0.015-0.030 µg/L 0.5-150 µg/L 平奶 MNFM 植物生长 MSPE HPLC-UV 0.015-0.030 µg/L 0.5-150 µg/L 栗科 MNFM 葡萄 MSPE HPLC-UV 0.015-0.030 µg/L 0.5-150 µg/L 栗科 MNFM 蘭労 MB SPE HPLC-LUV 0.015-0.030 µg/L 元400 燕科 MNFM 蘭労 MB SPE HPLC-FLD 0.15-0.030 µg/L 0.5-1000 µg/L 燕科 Motuget 國	MOPs	三唑类杀菌剂	MSPE	GC-FID	0.12~0.19 μg/L	0.5~200 μg/L	蔬菜	[118]
HF-CuFe ₂ 04 ボ丹红 I-IV 染料 MSPE HPLC-DAD 0.56-0.60 ng/g 5~4000 ng/g 腐孔 CuMeS 磺胺类 SPME HPLC-UV 0.077-0.350 µg/L 0.5~150 µg/L 牛奶 CuMeS 磺胺类 SPME HPLC-UV 0.077-0.350 µg/L 0.5~150 µg/L 牛奶 @MON-NH3 物质 竹粉 0.015 0.015-0.030 µg/L 0.5~1000 µg/L 果 MNFsM 植物生长 BPE UPLC-UV 0.015-0.030 µg/L 0.05~1000 µg/L 果 MNFsM 葡萄物生长 BPE UPLC-MS/MS 0.2-2 ng/g 0.6~100 ng/L 素 Moreal 酸素 SPE UPLC-MS/MS 0.2-2 ng/g 0.6~100 ng/L 燕 Androgel 酸素 SPE UPLC-FLD 0.3-1 µg/kg 1~5000 µg/kg Androgel 罗丹明 B SPE HPLC-FLD 0.3-1 µg/kg 1~5000 µg/kg	OS@MPS@PMAA	有机磷农药	Md-SPE	GC-FPD, GC-MS	3.6~3.8 µg/kg	25~250 μg/kg	草莓	[119]
CuMeS 磺胺类 SPME HPLC-UV 0.077~0.350 μg/L 0.5~150 μg/L 牛奶 @MON-NH ₂ 肉分泌干扰 MSPE HPLC-UV 0.015~0.030 μg/L 0.5~1000 μg/L 果汁 @MON-NH ₂ 物质 MSPE HPLC-UV 0.015~0.030 μg/L 0.05~1000 μg/L 果汁 N NFM 植物生长 SPE UPLC-MS/MS 0.2~2 ng/g 0.6~100 ng/L 累許 A NFM 蘭芳 SPE UPLC-MS/MS 0.2~2 ng/g 0.6~100 ng/L 那許 A hydrogel 酸类 SPME HPLC-FLD 0.3~1 μg/kg 1~5000 μg/kg 4 A hydrogel 罗丹明 B SPE HPLC-FLD 0.5 mg/kg a 3 4	AHS-CuFe ₂ O ₄	苏丹红 I-IV 染料	MSPE	HPLC-DAD	0.56~0.60 ng/g	5~4000 ng/g	廢乳	[120]
	CuMeS	磺胺类	SPME	HPLC-UV	0.077~0.350 µg/L	0.5~150 μg/L	牛奶	[121]
AN NFsM 植物生长 SPE UPLC-MS/MS 0.2~2 ng/g 0.6~100 ng/g 蔬菜 a j mj 为 。 mixture membrane 酚类 SPME HPLC-FLD 0.3~1 µg/kg 1~5000 µg/kg 烟熏食品 A hydrogel 罗丹明 B SPE HPLC-FLD 0.5 mg/kg a 涂椒粉、诺梅、香肠	@MON-NH2	内分泌干扰 物质	MSPE	HPLC-UV	0.015~0.030 μg/L	$0.05{\sim}1000~\mu g/L$	展计	[122]
c mixture membrane 酚类 SPME HPLC-FLD 0.3~1 μg/kg 1~5000 μg/kg μ熏食品 A hydrogel 罗丹明 B SPE HPLC-FLD 0.5 mg/kg	AN NFsM	植物生长 调节剂	SPE	UPLC-MS/MS	0.2~2 ng/g	0.6~100 ng/g	蔬菜	[123]
A hydrogel 罗丹明 B SPE HPLC-FLD 0.5 mg/kg a 狭极粉、话梅、香肠	c mixture membrane	酚类	SPME	HPLC-FLD	0.3~1 μg/kg	1~5000 μg/kg	烟熏食品	[124]
	A hydrogel	罗丹明 B	SPE	HPLC-FLD	0.5 mg/kg	в	辣椒粉、话梅、香肠	[125]

应制备了超交联聚合物苯二甲醇,采用物理涂覆方法将其 涂覆不锈钢丝制备 SPME 纤维, 随后将 SPME 纤维用于蔬 菜中有机氯农残的高效富集。Song 等^[117]通过简单绿色的 重氮偶合反应合成多孔有机聚合物 HAzo-POP, 该材料因 具有多孔特性、高度共轭结构和强氢键作用呈现良好的稳 定性和高效吸附性能,将其作为 SPE 吸附剂,结合高效液 相色谱-紫外检测法 (high performance liquid chromatography ultraviolet detection, HPLC-UV)建立了蔬 菜、牛奶和果汁样品中芳香类农残的灵敏检测方法。Li等 [118]以 1,3,5-三(4-氨基苯氧基)苯和 1,3,5-三羟基苯为单体, 以 Fe₃O₄@SiO₂ 为核, 通过简单的偶氮反应合成了磁性多 孔有机聚合物,该制备过程温和、绿色、环保,避免了高 温、金属催化和有害有机试剂的使用, 合成的材料具有较 高的表面积、良好的稳定性/分散性以及对三唑类杀菌剂的 优异萃取性能,随后建立了以磁性多孔有机聚合物为吸附 剂的 MSPE-GC-FID 检测方法,用于蔬菜中目标三唑类杀 菌剂的分析,所建立方法在0.5~200 g/L范围内呈现良好的 线性关系, 检出限为 0.12~0.19 g/L, 这是目前采用 GC-FID 检测三唑类杀菌剂的最低检出限。

2.5.3 其他材料

此外, 多种其他新型材料被用于食品样品前处理研 究。Liu 等^[120]合成 3D 分层磁性空心球状 CuFe₂O₄纳米材 料(3D HMHS-CuFe₂O₄),将其作为 MSPE 吸附剂结合 HPLC-DAD 检测腐乳样品中的苏丹红染料(I、II、III和 IV), 与颗粒状 CuFe₂O₄相比, 3DHMHS-CuFe₂O₄因具有分层空 心结构使得目标分析物很容易扩散到反应部位而具有更好 的吸附能力。Chatzimitakos 等^[121]通过在铜纳米片表面修 饰三聚氰胺海绵体一步合成 CuMeS 富集牛奶中的 SAs, 这 是首次利用铜离子对 SAs 的高亲和力进行分析, 所建立的 方法具有高选择性和灵性敏(LOD 可达 0.077~0.350 μg/L); Du 等^[122]合成 Fe₃O₄@MON-NH₂复合纳米材料,将其用作 MSPE 吸附剂结合 HPLC-UV 检测果汁中的 EDCs, 结果表 明将氨基并入疏水性 MON-NH2 网络提高了对目标 EDCs 的富集能力; Cao 等^[123]将硫醇功能化的聚丙烯腈纳米纤维 毡作为 SPE 吸附剂,结合 UPLC-MS/MS 建立了一种简单 环保的植物生长调节剂的检测方法,用于蔬菜中植物生长 调节剂残留的检测, 灵敏度达到 0.2~2 ng/g; Shishov 等^[124] 开发了一种新型样品前处理方法,该方法基于在亲水性多 孔膜中支撑的分析物(氢键供体)和胆碱氯化物(氢键受体) 之间原位形成深共晶混合物,使得分析物被提取并保留在 亲水性多孔膜中,随后将含有分析物的亲水性多孔膜转移 到水相中,由于深共晶混合物在水相中分解,分析物发生 反萃取,将该方法结合高效液相色谱荧光检测法(high performance liquid chromatography with fluorescence detection, HPLC-FLD)用于烟熏食物中酚类化合物的灵敏 检测; Huang 等^[125]开发了聚乙烯醇水凝胶-SPE-HPLC-FLD

方法检测辣椒粉、果脯和香肠中的罗丹明 B, 所建立的方 法检测时间小于 5 min, 且聚乙烯醇水凝胶的提取效率为 96.65%, 该方法具有操作简单、分析时间短、检测限低和 设备廉价等优点, 另外用于制备水凝胶的化学药品是无毒 的, 且基底具有可变形性和粘性, 因此可适用于多种食品 中污染物的检测研究。

3 结语与展望

当前,人类受到食品中大量污染物的严重危害,而复 杂食品基质中痕量污染物的有效检测仍然面临巨大挑战。 因此开发可靠的样品前处理技术以提高检测效率至关重 要。纳米材料因具有独特的物理和化学特性,使其成为良 好的吸附剂候选材料,将纳米材料应用至食品样品前处理 已经成为食品分析领域的研究热点。已有大量新兴纳米材 料包括碳纳米材料、MOF、COF、MIP等用于食品样品前 处理,极大地改善了食品安全筛查现状。纳米材料主要通 过疏水作用、氢键作用、π-π 堆积作用、体积排阻作用和 亲水作用有效富集痕量污染物。此外,磁性纳米材料的应 用简化了样品前处理过程,提高了污染物富集效率。基于 纳米材料的样品前处理和典型分析技术的结合显著提高了 痕量污染物的检测灵敏度、精确度和准确性。

尽管食品中痕量污染物的样品前处理技术已经取得 一些进展,但是由于食品样品基质复杂、污染物种类多样 且含量低,当前的方法仍难以满足食品安全监管快速、高 通量筛查的需求,食品中痕量污染物检测仍然面临严峻的 挑战。针对这些问题,可以从以下几个方面展开深入研究: 通过设计官能团修饰的纳米材料并结合先进功能材料, 制备出能够高效、高选择性和高特异性富集痕量目标分 析物的新型纳米材料;同时,未来的工作还应着眼于采 取绿色、简单的方法制备样品前处理材料,开发在线提取 方法以及商业化检测产品。总之,本次总结让我们看到了 纳米材料在食品样品前处理中令人鼓舞的研究进展,我 们期望更多基于新型纳米材料的食品样品预处理方法被 不断开发。

参考文献

- Mishra GK, Barfidokht A, Tehrani F, *et al.* Food safety analysis using electrochemical biosensors [J]. Foods, 2018, 7(9): 141–152.
- [2] Lan L, Yao Y, Ping J, *et al.* Recent progress in nanomaterial-based optical aptamer assay for the detection of food chemical contaminants [J]. ACS Appl Mater Interf, 2017, 9(28): 23287–23301.
- [3] Shao B, Li H, Shen J, et al. Nontargeted detection methods for food safety and integrity [J]. Annu Rev Food Sci Technol, 2019, 10: 429–455.
- [4] Farré M, Barceló D, Barceló D. Analysis of emerging contaminants in food [J]. TrAC-Trend Anal Chem, 2013, 43: 240–253.
- [5] Wen Y, Chen L, Li J, et al. Recent advances in solid-phase sorbents for sample preparation prior to chromatographic analysis [J]. TrAC-Trend

Anal Chem, 2014, 59: 26-41.

- [6] Płotka-Wasylka J, Szczepańska N, Guardia M, et al. Modern trends in solid phase extraction: New sorbent media [J]. TrAC-Trend Anal Chem, 2016, 77: 23–43.
- [7] Fontanals N, Marcé RM, Borrull F. New hydrophilic materials for solid-phase extraction [J]. TrAC-Trend Anal Chem, 2005, 24(5): 394–406.
- [8] Zhang Y, Li G, Wu D, et al. Recent advances in emerging nanomaterials based food sample pretreatment methods for food safety screening [J]. TrAC-Trend Anal Chem, 2019, 121: 115669.
- [9] Gonzalez-Salamo J, Socas-Rodriguez B, Hernandez-Borges J, et al. Nanomaterials as sorbents for food sample analysis [J]. TrAC-Trend Anal Chem, 2016, 85: 203–220.
- [10] Xu M, Liang T, Shi M, et al. Graphene-like two-dimensional materials [J]. Chem Rev, 2013, 113(5): 3766–3798.
- [11] Jiang HL, Lin YL, Li N, et al. Application of magnetic N-doped carbon nanotubes in solid-phase extraction of trace bisphenols from fruit juices [J]. Food Chem, 2018, 269: 413–418.
- [12] Yazdi MN, Yamini Y, Asiabi H. Multiwall carbon nanotube-zirconium oxide nanocomposite hollow fiber solid phase microextraction for determination of polyaromatic hydrocarbons in water, coffee and tea samples [J]. J Chromatogr A, 2018, 1554: 8–15.
- [13] Nasir ANM, Yahaya N, Zain NNM, et al. Thiol-functionalized magnetic carbon nanotubes for magnetic micro-solid phase extraction of sulfonamide antibiotics from milks and commercial chicken meat products [J]. Food Chem, 2019, 276: 458–466.
- [14] Lei S, Li X, Wang Y, et al. Synthesis of magnetic multiwall carbon nanotubes for enantioseparation of three pesticide residues in fruits and vegetables by chiral liquid chromatography [J]. Chirality, 2018, 30(12): 1321–1329.
- [15] Fu L, Zhou H, Miao E, *et al.* Functionalization of amino terminated carbon nanotubes with isocyanates for magnetic solid phase extraction of sulfonamides from milk and their subsequent determination by liquid chromatography-high resolution mass spectrometry [J]. Food Chem, 2019, 289: 701–707.
- [16] Zhu B, Xu X, Luo J, et al. Simultaneous determination of 131 pesticides in tea by on-line GPC-GC-MS/MS using graphitized multi-walled carbon nanotubes as dispersive solid phase extraction sorbent [J]. Food Chem, 2019, 276: 202–208.
- [17] Ma S, Wang M, You T, et al. Using Magnetic multiwalled carbon nanotubes as modified QuEChERS adsorbent for simultaneous determination of multiple mycotoxins in grains by UPLC-MS/MS [J]. J Agric Food Chem, 2019, 67(28): 8035–8044.
- [18] Chen H, Huang C, Zhang W, et al. Ultrastable nitrogen-doped carbon nanotube encapsulated cobalt nanoparticles for magnetic solid-phase extraction of okadaic acid from aquatic samples [J]. J Chromatogr A, 2019, 1608: 460404.
- [19] Ma H, Ran C, Li M, et al. Graphene oxide-coated stir bar sorptive extraction of trace aflatoxins from soy milk followed by high performance liquid chromatography-laser-induced fluorescence detection [J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 2018, 35(4): 772–781.

- [20] Cao S, Chen Y, Zhang L, et al. Designed multifunctional ionic liquids-magnetic graphene nanocomposites as the adsorbent of MSPE for the determination of preservatives [J]. Anal Method, 2018, 10(12): 1420–1430.
- [21] Tong Y, Liu X, Zhang L. Green construction of Fe₃O₄@GC submicrocubes for highly sensitive magnetic dispersive solid-phase extraction of five phthalate esters in beverages and plastic bottles [J]. Food Chem, 2019, 277: 579–585.
- [22] Pinsrithong S, Bunkoed O. Hierarchical porous nanostructured polypyrrole-coated hydrogel beads containing reduced graphene oxide and magnetite nanoparticles for extraction of phthalates in bottled drinks [J]. J Chromatogr A, 2018, 1570: 19–27.
- [23] Han X, Chen J, Qiu H, et al. Solid/liquid phase microextraction of five bisphenol-type endocrine disrupting chemicals by using a hollow fiber reinforced with graphene oxide nanoribbons, and determination by HPLC-PDA [J]. Mikrochim Acta, 2019, 186(6): 375–383.
- [24] Zhang M, Ma G, Zhang L, et al. Chitosan-reduced graphene oxide composites with 3D structures as effective reverse dispersed solid phase extraction adsorbents for pesticides analysis [J]. Analyst, 2019, 144(17): 5164–5171.
- [25] Zhang J, Li W, Zhu W, et al. Mesoporous graphitic carbon nitride as an efficient sorbent for extraction of sulfonamides prior to HPLC analysis [J]. Mikrochim Acta, 2019, 186(5): 279–287.
- [26] Carpi F, Carpi A, Russo MA. Natural and artificial helical structures [M]. London: Design and Nature, 2010.
- [27] Schedin F, Geim AK, Morozov SV, et al. Detection of individual gas molecules adsorbed on graphene [J]. Nat Mater, 2007, 6(9): 652–655.
- [28] Geim AK, Novoselov KS. The rise of graphene [J]. Nat Mater, 2007, 6: 183–191.
- [29] Pytlakowska K. Dispersive micro solid-phase extraction of heavy metals as their complexes with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol using graphene oxide nanoparticles [J]. Microchimica Acta, 2015, 183(1): 91–99.
- [30] Islam A, Ahmad H, Zaidi N, et al. Graphene oxide sheets immobilized polystyrene for column preconcentration and sensitive determination of lead by flame atomic absorption spectrometry [J]. ACS Appl Mater Inter, 2014, 6(15): 13257–13265.
- [31] Herrero-Latorre C, Barciela-Garcia J, Garcia-Martin S, *et al.* Graphene and carbon nanotubes as solid phase extraction sorbents for the speciation of chromium: A review [J]. Anal Chim Acta, 2018, 1002: 1–17.
- [32] Thomas A, Fischer A, Goettmann F, et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts [J]. J Mater Chem, 2008, 18(41): 4893–4908.
- [33] Zheng Y, Liu J, Liang J, et al. Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis [J]. Energ Environ Sci, 2012, 5(5): 6717–6731.
- [34] Montigaud H, Tanguy B, Demazeau G, et al. C₃N₄: Dream or reality? Solvothermal synthesis as macroscopic samples of the C₃N₄ graphitic form [J]. J Mater Sci, 2000, 35: 2547–2552.
- [35] Sun YP, Ha W, Chen J, *et al.* Advances and applications of graphitic carbon nitride as sorbent in analytical chemistry for sample pretreatment:

A review [J]. TrAC-Trend Anal Chem, 2016, 84: 12-21.

- [36] Li HL, Keeffe MO, Yaghi OM. Design and synthesis of an exceptionally stable and highly porous metal-organic framework [J]. Nature, 1999, 402(18): 1–3.
- [37] James SL. Metal-organic frameworks [J]. Chem Soc Rev, 2003, 32(5): 276–288.
- [38] Liu CS, Li J, Pang H. Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing [J]. Coord Chem Rev, 2020, 410: 213–222.
- [39] Zhou Z, Fu Y, Qin Q, et al. Synthesis of magnetic mesoporous metal-organic framework-5 for the effective enrichment of malachite green and crystal violet in fish samples [J]. J Chromatogr A, 2018, 1560: 19–25.
- [40] Zhang S, Yang Q, Li Z, et al. Solid phase microextraction of phthalic acid esters from vegetable oils using iron (III)-based metal-organic framework/graphene oxide coating [J]. Food Chem, 2018, 263: 258–264.
- [41] Yan Z, Wu M, Hu B, Yao M, et al. Electrospun UiO-66/polyacrylonitrile nanofibers as efficient sorbent for pipette tip solid phase extraction of phytohormones in vegetable samples [J]. J Chromatogr A, 2018, 1542: 19–27.
- [42] Zhang N, Huang C, Feng Z, et al. Metal-organic framework-coated stainless steel fiber for solid-phase microextraction of polychlorinated biphenyls [J]. J Chromatogr A, 2018, 1570: 10–18.
- [43] Li Y, Zhu N, Chen T, et al. A green cyclodextrin metal-organic framework as solid-phase extraction medium for enrichment of sulfonamides before their HPLC determination [J]. Microchem J, 2018, 138: 401–407.
- [44] Liang L, Wang X, Sun Y, et al. Magnetic solid-phase extraction of triazine herbicides from rice using metal-organic framework MIL-101(Cr) functionalized magnetic particles [J]. Talanta, 2018, 179: 512–519.
- [45] Mohammadnejad M, Gudarzi Z, Geranmayeh S, et al. HKUST-1 metal-organic framework for dispersive solid phase extraction of 2-methyl-4-chlorophenoxyacetic acid (MCPA) prior to its determination by ion mobility spectrometry [J]. Microchim Acta, 2018, 185(10): 1–2.
- [46] Jiang Y, Ma P, Li X, et al. Application of metal-organic framework MIL-101(Cr) to microextraction in packed syringe for determination of triazine herbicides in corn samples by liquid chromatography-tandem mass spectrometry [J]. J Chromatogr A, 2018, 1574: 36–41.
- [47] Wang Y, Tong Y, Xu X, *et al.* Metal-organic framework-derived three-dimensional porous graphitic octahedron carbon cages-encapsulated copper nanoparticles hybrids as highly efficient enrichment material for simultaneous determination of four fluoroquinolones [J]. J Chromatogr A, 2018, 1533: 1–9.
- [48] Yamini Y, Safari M, Morsali A, *et al.* Magnetic frame work composite as an efficient sorbent for magnetic solid-phase extraction of plasticizer compounds [J]. J Chromatogr A, 2018, 1570: 38–46.
- [49] Xia S, Cai Z, Dong J, et al. Preparation of porous zinc ferrite/carbon as a magnetic-assisted dispersive miniaturized solid phase extraction sorbent and its application [J]. J Chromatogr A, 2018, 1567: 73–80.
- [50] Li D, He M, Chen B, et al. Metal organic frameworks-derived magnetic nanoporous carbon for preconcentration of organophosphorus pesticides from fruit samples followed by gas chromatography-flame photometric

detection [J]. J Chromatogr A, 2019, 1583: 19-27.

- [51] Ghani M, Ghoreishi SM, Azamati M. In-situ growth of zeolitic imidazole framework-67 on nanoporous anodized aluminum bar as stir-bar sorptive extraction sorbent for determining caffeine [J]. J Chromatogr A, 2018, 1577: 15–23.
- [52] Liu M, Wang J, Yang Q, et al. Patulin removal from apple juice using a novel cysteine-functionalized metal-organic framework adsorbent [J]. Food Chem, 2019, 270: 1–9.
- [53] Khoobi A, Salavati-Niasari M, Ghani M, et al. Multivariate optimization methods for in-situ growth of LDH/ZIF-8 nanocrystals on anodized aluminium substrate as a nanosorbent for stir bar sorptive extraction in biological and food samples [J]. Food Chem, 2019, 288: 39–46.
- [54] Mondal S, Xu J, Chen G, et al. Solid-phase microextraction of antibiotics from fish muscle by using MIL-101(Cr)NH₂-polyacrylonitrile fiber and their identification by liquid chromatography-tandem mass spectrometry [J]. Anal Chim Acta, 2019, 1047: 62–70.
- [55] Amiri A, Tayebee R, Abdar A, et al. Synthesis of a zinc-based metal-organic framework with histamine as an organic linker for the dispersive solid-phase extraction of organophosphorus pesticides in water and fruit juice samples [J]. J Chromatogr A, 2019, 1597: 39–45.
- [56] Yilmaz E, Senel E, Ok S. Cholesterol removal by selected metal-organic frameworks as adsorbents [J]. J Food Sci Technol, 2020, 57(1): 173–181.
- [57] Pang Y, Zang X, Li H, et al. Solid-phase microextraction of organophosphorous pesticides from food samples with a nitrogen-doped porous carbon derived from g-C₃N₄ templated MOF as the fiber coating [J]. J Hazard Mater, 2020, 384: 121430.
- [58] Mirzajani R, Kardani F, Ramezani Z. Fabrication of UMCM-1 based monolithic and hollow fiber-Metal-organic framework deep eutectic solvents/molecularly imprinted polymers and their use in solid phase microextraction of phthalate esters in yogurt, water and edible oil by GC-FID [J]. Food Chem, 2020, 314: 126179.
- [59] Li K, Li JJ, Zhao N, et al. Removal of tetracycline in sewage and dairy products with high-stable MOF [J]. Molecules, 2020, 25(6): 1312.
- [60] Zhang QC, Xia GP, Liang JY, et al. NH2-MIL-53(Al) Polymer monolithic column for in-tube solid-phase microextraction combined with UHPLC-MS/MS for detection of trace sulfonamides in food samples [J]. Molecules, 2020, 25(4): 897.
- [61] Yang J, Dong X, Zhen X, et al. Metal organic framework assisted in situ complexation for miniaturized solid phase extraction of organic mercury in fish and dendrobium officinale [J]. Talanta, 2020, 209: 120598.
- [62] Zhou YY, Yan XP, Kim KN, et al. Exploration of coordination polymer as sorbent for flow injection solid-phase extraction on-line coupled with high-performance liquid chromatography for determination of polycyclic aromatic hydrocarbons in environmental materials [J]. J Chromatogr A, 2006, 1116(1-2): 172–178.
- [63] Cui XY, Gu ZY, Jiang DQ, et al. In situ hydrothermal growth of metal-organic framework 199 films on stainless steel fibers for solid-phase microextraction of gaseous benzene homologues [J]. Anal Chem, 2009, 81: 9771–9777.
- [64] Svafavrikov'a M, Svafavri I. Magnetic solid-phase extraction [J]. J Magn Magn Mater, 1999, 194: 108–112.

- [65] Maya F, Palomino CC, Frizzarin RM, et al. Magnetic solid-phase extraction using metal-organic frameworks (MOFs) and their derived carbons [J]. TrAC-Trend Anal Chem, 2017, 90: 142–152.
- [66] Huo SH, Yan XP. Facile magnetization of metal-organic framework MIL-101 for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples [J]. Analyst, 2012, 137(15): 3445–3451.
- [67] Chaikittisilp W, Ariga K, Yamauchi Y. A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications [J]. J Mater Chem A, 2013, 1(1): 14–19.
- [68] Adrien PCAIB, Nathan WO, Michael OK, et al. Porous, crystalline, covalent organic frameworks [J]. Science, 2005, 310(5751): 1166–1170.
- [69] Li N, Du J, Wu D, et al. Recent advances in facile synthesis and applications of covalent organic framework materials as superior adsorbents in sample pretreatment [J]. TrAC-Trend Anal Chem, 2018, 108: 154–166.
- [70] Liu X, Huang D, Lai C, et al. Recent advances in covalent organic frameworks (COFs) as a smart sensing material [J]. Chem Soc Rev, 2019, 48(20): 5266–5302.
- [71] Lohse MS, Bein T. Covalent organic frameworks: Structures, synthesis, and applications [J]. Adv Funct Mater, 2018, 28(33): 1705553.
- [72] Zhuang S, Liu Y, Wang J. Covalent organic frameworks as efficient adsorbent for sulfamerazine removal from aqueous solution [J]. J Hazard Mater, 2020, 383: 121126.
- [73] Liu JM, Wang XZ, Zhao CY, et al. Fabrication of porous covalent organic frameworks as selective and advanced adsorbents for the on-line preconcentration of trace elements against the complex sample matrix [J]. J Hazard Mater, 2018, 344: 220–229.
- [74] Zhao W, Wang X, Guo J, et al. Evaluation of sulfonic acid functionalized covalent triazine framework as a hydrophilic-lipophilic balance/cation-exchange mixed-mode sorbent for extraction of benzimidazole fungicides in vegetables, fruits and juices [J]. J Chromatogr A, 2020, 1618: 460847.
- [75] Li N, Wu D, Hu N, et al. Effective enrichment and detection of trace polycyclic aromatic hydrocarbons in food samples based on magnetic covalent organic framework hybrid microspheres [J]. J Agric Food Chem, 2018, 66(13): 3572–3580.
- [76] Wu T, Zang X, Wang M, et al. Covalent organic framework as fiber coating for solid-phase microextraction of chlorophenols followed by quantification with gas chromatography-mass spectrometry [J]. J Agric Food Chem, 2018, 66(42): 11158–11165.
- [77] Shahvar A, Soltani R, Saraji M, et al. Covalent triazine-based framework for micro solid-phase extraction of parabens [J]. J Chromatogr A, 2018, 1565: 48–56.
- [78] Yan Z, Hu B, Li Q, et al. Facile synthesis of covalent organic framework incorporated electrospun nanofiber and application to pipette tip solid phase extraction of sulfonamides in meat samples [J]. J Chromatogr A, 2019, 1584: 33–41.
- [79] Deng ZH, Wang X, Wang XL, et al. A core-shell structured magnetic covalent organic framework (type Fe₃O₄@COF) as a sorbent for solid-phase extraction of endocrine-disrupting phenols prior to their

quantitation by HPLC [J]. Mikrochim Acta, 2019, 186(2): 108.

- [80] Zhang J, Chen Z, Tang S, et al. Fabrication of porphyrin-based magnetic covalent organic framework for effective extraction and enrichment of sulfonamides [J]. Anal Chim Acta, 2019, 1089: 66–77.
- [81] Wen A, Li G, Wu D, et al. Sulphonate functionalized covalent organic framework-based magnetic sorbent for effective solid phase extraction and determination of fluoroquinolones [J]. J Chromatogr A, 2020, 1612: 460651.
- [82] Li N, Wu D, Liu J, et al. Magnetic covalent organic frameworks based on magnetic solid phase extraction for determination of six steroidal and phenolic endocrine disrupting chemicals in food samples [J]. Microchem J, 2018, 143: 350–358.
- [83] Liu J, Li G, Wu D, et al. Facile preparation of magnetic covalent organic framework-metal organic framework composite materials as effective adsorbents for the extraction and determination of sedatives by high-performance liquid chromatography/tandem mass spectrometry in meat samples [J]. Rap Comm Mass Spect, 2020, 34(10): e8742.
- [84] Pang YH, Yue Q, Huang YY, et al. Facile magnetization of covalent organic framework for solid-phase extraction of 15 phthalate esters in beverage samples [J]. Talanta, 2020, 206: 120194.
- [85] Zhang M, Li J, Zhang C, et al. In-situ synthesis of fluorinated magnetic covalent organic frameworks for fluorinated magnetic solid-phase extraction of ultratrace perfluorinated compounds from milk [J]. J Chromatogr A, 2020, 1615: 460773.
- [86] Liang R, Hu Y, Li G. Photochemical synthesis of magnetic covalent organic framework/carbon nanotube composite and its enrichment of heterocyclic aromatic amines in food samples [J]. J Chromatogr A, 2020, 1618: 460867.
- [87] Lu J, Wang R, Luan J, et al. A functionalized magnetic covalent organic framework for sensitive determination of trace neonicotinoid residues in vegetable samples [J]. J Chromatogr A, 2020, 1618: 460898.
- [88] Lin X, Wang X, Wang J, et al. Facile synthesis of a core-shell structured magnetic covalent organic framework for enrichment of organophosphorus pesticides in fruits [J]. Anal Chim Acta, 2020, 1101: 65–73.
- [89] Li N, Wu D, Li X, et al. Effective enrichment and detection of plant growth regulators in fruits and vegetables using a novel magnetic covalent organic framework material as the adsorbents [J]. Food Chem, 2020, 306: 125455.
- [90] Zhou T, Ding L, Che G, et al. Recent advances and trends of molecularly imprinted polymers for specific recognition in aqueous matrix: Preparation and application in sample pretreatment [J]. TrAC-Trend Anal Chem, 2019, 114: 11–28.
- [91] Qiu X, Xu XY, Liang Y, et al. The molecularly imprinted polymer supported by anodic alumina oxide nanotubes membrane for efficient recognition of chloropropanols in vegetable oils [J]. Food Chem, 2018, 258: 295–300.
- [92] Negarian M, Mohammadinejad A, Mohajeri SA. Preparation, evaluation and application of core-shell molecularly imprinted particles as the sorbent in solid-phase extraction and analysis of lincomycin residue in pasteurized milk [J]. Food Chem, 2019, 288: 29–38.

- [93] Bagheri AR, Arabi M, Ghaedi M, et al. Dummy molecularly imprinted polymers based on a green synthesis strategy for magnetic solid-phase extraction of acrylamide in food samples [J]. Talanta, 2019, 195: 390–400.
- [94] Zhao M, Shao H, Ma J, et al. Preparation of core-shell magnetic molecularly imprinted polymers for extraction of patulin from juice samples [J]. J Chromatogr A, 2020, 1615: 460751.
- [95] Teixeira RA, Flores DHA, da Silva RCS, et al. Pipette-tip solid-phase extraction using poly(1-vinylimidazole-co-trimethylolpropane trimethacrylate) as a new molecularly imprinted polymer in the determination of avermeetins and milbemycins in fruit juice and water samples [J]. Food Chem, 2018, 262: 86–93.
- [96] Zhao X, Wang J, Wang J, et al. Development of water-compatible molecularly imprinted solid-phase extraction coupled with high performance liquid chromatography-tandem mass spectrometry for the detection of six sulfonamides in animal-derived foods [J]. J Chromatogr A, 2018, 1574: 9–17.
- [97] Pereira I, Rodrigues MF, Chaves AR, et al. Molecularly imprinted polymer (MIP) membrane assisted direct spray ionization mass spectrometry for agrochemicals screening in foodstuffs [J]. Talanta, 2018, 178: 507–514.
- [98] Yang J, Li Y, Huang C, et al. A phenolphthalein-dummy template molecularly imprinted polymer for highly selective extraction and clean-up of bisphenol A in complex biological, environmental and food samples [J]. Polymers, 2018, 10(10): 1150.
- [99] Wang H, Liu Y, Yao S, et al. Selective recognization of dicyandiamide in bovine milk by mesoporous silica SBA-15 supported dicyandiamide imprinted polymer based on surface molecularly imprinting technique [J]. Food Chem, 2018, 240: 1262–1267.
- [100] Wang S, She Y, Hong S, *et al.* Dual-template imprinted polymers for class-selective solid-phase extraction of seventeen triazine herbicides and metabolites in agro-products [J]. J Hazard Mater, 2019, 367: 686–693.
- [101] Zheng X, Wang J. A novel metal-organic framework composite, MIL-101(Cr)@MIP, as an efficient sorbent in solid-phase extraction coupling with HPLC for tribenuron-methyl determination [J]. Int J Anal Chem, 2019, 2019: 2547280.
- [102] Zhang D, Liu H, Geng W, et al. A dual-function molecularly imprinted optopolymer based on quantum dots-grafted covalent-organic frameworks for the sensitive detection of tyramine in fermented meat products [J]. Food Chem, 2019, 277: 639–645.
- [103] Huang Z, He J, Li Y, *et al.* Preparation of dummy molecularly imprinted polymers for extraction of zearalenone in grain samples [J]. J Chromatogr A, 2019, 1602: 11–18.
- [104] Wang C, Ding C, Wu Q, et al. Molecularly imprinted polymers with dual template and bifunctional monomers for selective and simultaneous solid-phase extraction and gas chromatographic determination of four plant growth regulators in plant-derived tissues and foods [J]. Food Anal Method, 2019, 12(5): 1160–1169.
- [105] Liu Y, Yang Q, Chen X, et al. Sensitive analysis of trace macrolide antibiotics in complex food samples by ambient mass spectrometry with molecularly imprinted polymer-coated wooden tips [J]. Talanta, 2019, 204: 238–247.
- [106] Li Z, Wang J, Chen X, et al. A novel molecularly imprinted polymer-solid

phase extraction method coupled with high performance liquid chromatography tandem mass spectrometry for the determination of nitrosamines in water and beverage samples [J]. Food Chem, 2019, 292: 267–274.

- [107] Tan S, Yu H, He Y, et al. A dummy molecularly imprinted solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry for selective determination of four pyridine carboxylic acid herbicides in milk [J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2019, 1108: 65–72.
- [108] Zhang Q, Fan L, Lu Q, et al. Preparation and application of molecularly imprinted polymer solid-phase microextraction fiber for the selective analysis of auxins in tobacco [J]. J Sep Sci, 2019, 42(16): 2687–2695.
- [109] Wang R, Wu P, Cui Y, et al. Selective recognition and enrichment of sterigmatocystin in wheat by thermo-responsive imprinted polymer based on magnetic halloysite nanotubes [J]. J Chromatogr A, 2020, 1619: 460952.
- [110] Huang Z, He J, Li H, et al. Synthesis and application of magnetic-surfaced pseudo molecularly imprinted polymers for zearalenone pretreatment in cereal samples [J]. Food Chem, 2020, 308: 125696.
- [111] Yavuz E, Tokalioglu S, Patat S. Core-shell Fe₃O₄ polydopamine nanoparticles as sorbent for magnetic dispersive solid-phase extraction of copper from food samples [J]. Food Chem, 2018, 263: 232–239.
- [112] Du L, Wang X, Liu T, et al. Magnetic solid-phase extraction of organophosphorus pesticides from fruit juices using NiFe2O4@polydopamine@Mg/Al-layered double hydroxides nanocomposites as an adsorbent [J]. Microchem J, 2019, 150: 104128.
- [113] Wang W, Wang W, Zhang S, et al. Hyper-crosslinked polymer nanoparticles as the solid-phase microextraction fiber coating for the extraction of organochlorines [J]. J Chromatogr A, 2018, 1556: 47–54.
- [114] Lei H, Hu Y, Li G. Magnetic poly(phenylene ethynylene) conjugated microporous polymer microspheres for bactericides enrichment and analysis by ultra-high performance liquid chromatography-tandem mass spectrometry [J]. J Chromatogr A, 2018, 1580: 22–29.
- [115] Liang X, Wang J, Wu Q, et al. Use of a hypercrosslinked triphenylamine polymer as an efficient adsorbent for the enrichment of phenylurea herbicides [J]. J Chromatogr A, 2018, 1538: 1–7.
- [116] Zheng S, He M, Chen B, et al. Melamine-based porous organic polymers inline solid phase extraction coupled with high performance liquid chromatography for the analysis of phytohormones in juice samples [J]. J Chromatogr A, 2018, 1567: 64–72.
- [117] Song Y, Zhang D, Hao L, *et al.* Green synthesis of o-hydroxyazobenzene porous organic polymer for efficient adsorption of aromatic compounds [J]. J Chromatogr A, 2019, 1583: 39–47.
- [118] Li D, He M, Chen B, et al. Magnetic porous organic polymers for magnetic solid-phase extraction of triazole fungicides in vegetables prior to their determination by gas chromatography-flame ionization detection [J]. J Chromatogr A, 2019, 1601: 1–8.
- [119] Fernandes VC, Freitas M, Pacheco JPG, et al. Magnetic dispersive micro solid-phase extraction and gas chromatography determination of organophosphorus pesticides in strawberries [J]. J Chromatogr A, 2018, 1566: 1–12.

- [120] Liu X, Qi X, Zhang L. 3D hierarchical magnetic hollow sphere-like CuFe₂O₄ combined with HPLC for the simultaneous determination of Sudan I-IV dyes in preserved bean curd [J]. Food Chem, 2018, 241: 268–274.
- [121] Chatzimitakos TG, Stalikas CD. Melamine sponge decorated with copper sheets as a material with outstanding properties for microextraction of sulfonamides prior to their determination by high-performance liquid chromatography [J]. J Chromatogr A, 2018, 1554: 28–36.
- [122] Du ZD, Cui YY, Yang CX, et al. Synthesis of magnetic amino-functionalized microporous organic network composites for magnetic solid phase extraction of endocrine disrupting chemicals from water, beverage bottle and juice samples [J]. Talanta, 2020, 206: 120179.
- [123] Cao J, Li R, Liang S, et al. Simultaneous extraction of four plant growth regulators residues in vegetable samples using solid phase extraction based on thiol-functionalized nanofibers mat [J]. Food Chem, 2020, 310: 125859.
- [124] Shishov A, Gagarionova S, Bulatov A. Deep eutectic mixture membrane-based microextraction: HPLC-FLD determination of phenols in smoked food samples [J]. Food Chem, 2020, 314: 126097.
- [125] Huang Y, Wang D, Liu W, et al. Rapid screening of rhodamine B in food

by hydrogel solid-phase extraction coupled with direct fluorescence detection [J]. Food Chem, 2020, 316: 126378.

[126] Haeshin LSMD, William MM, et al. Mussel-inspired surface chemistry for multifunctional coatings [J]. Science, 2007, 318(5849): 426–430.

(责任编辑:于梦娇)

作者简介

刘江花,博士,讲师,主要研究方向为 食品安全检测。 E-mail: liujianghua0822@126.com

李国梁, 博士, 教授, 主要研究方向为 食品安全检测与质量控制技术。 E-mail: 61254368@163.com